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Abstract

The PEEL( land cover data set for the conterminous USA characterizes each of its five arc-
minute (5’) cells in terms of sub-pixel area fractions for fifteen land use and natural cover classes,
with the fractions for each cell summing to unity. This dataset has three advantages relative to
other products. First, its cover classes address distinctions important in studies of the economic
dimensions of land use and land cover change, by for example distinguishing between land uses
associated with human and natural processes and among different crops while simultaneously
providing a complete representation of cover in each cell. Second, aggregates for the various
cover classes in PEELg compare more favorably with national level statistics from the USDA
Major Land Uses (MLU) census data for 2002 than do other sources. Aggregate cultivated
land is within 0.8% of the MLU value, as compared to 16.2% for the Modis Land Cover Type
(MLCT) primary cover product, 1.8% for the National Land-Cover Database (NLCD), and 1.2%
for the Agricultural Lands in the Year 2000 dataset. Aggregate water, natural, and urban cover
classes are within 2.2, 1.0, and 6.1% resp. as compared to deviations of 24.0, 0.01, and 69.2% for
MLCT primary and 2.2, 1.35, and 6.1% for NLCD. Third, the spatial distribution of cultivated
land is also substantially improved; PEEL(’s per-cell sub-pixel fraction root mean square error
for cropland relative to the NLCD is 0.149 versus 0.175 for the 2001 MLCT primary classifica-
tion, a 16% improvement in RMSE. PEELg’s improved performance is due to the multi-source
guided aggregation-decomposition method used to construct this dataset. This method com-
bines information from multiple sources, including spatial data sets and agricultural production
statistics, to guide both aggregation of multiple fine-scale land use/land cover classifications,
and decomposition of hybrid classes to separate their constitutive land uses and natural covers.
We describe how we use this method to construct PEEL( by incorporating information from
the 2001 MODIS Land Cover Type data set, the 2001 NLCD, and the Agricultural Lands in
the Year 2000 data set. In the case of the MODIS data set we demonstrate that considering all
of its information components (primary classification, secondary classification, and confidence
level) leads to more accurate aggregate measures of cultivated acreage. We also describe our
evaluation process. This procedure is adaptable to other regions, data sets, and requirements.
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1 Introduction

Understanding the factors that drive land use change and developing better methods for projecting
future land use change are vitally important problems in the context of both climate change and
agricultural production. The 3rd Assessment Report of the UN Intergovernmental Panel on Climate
Change (IPCC) noted that “the emissions scenarios considered in future climate change studies need
to integrate high resolution representations of land use change,” and that increased coupling among
the various relevant components, such as mitigation and adaptation responses to climate change,
and climate response to land use, should be included in a consistent framework for integrated
assessment |Jones et all [2001]. For these and other reasons, models that integrate physical and
socio-economic factors at resolutions that resolve important variations in the spatial and temporal
patterns of land use decisions, environmental conditions, and climate impacts are necessary. Such
models can assist policy and decision makers to evaluate the life cycle impacts of programs intended
to, for example, subsidize the production of biofuels on industrial scales; encourage the adoption
of sustainable farming practices that will increase carbon uptake in the biosphere; or incentivize
research and development to both increase crop yields and decrease fertilizer use while anticipating
shifts in the distributions of particular crops in response to climate change. Relevant projects
include IMAGE [van Vuuren et al. 2006| 2007], AIM [Matsuoka et all,[1995], and, at the University
of Chicago, the Partial Equilibrium Economic Land-use (PEEL) model.

Such modeling can benefit greatly from accurate, high-resolution, and global characterizations of
current and past land use. Many projects have leveraged a variety of information sources to develop




such characterizations for different purposes, regions, and geographical and temporal scales. The
emergence of high-resolution multi-spectral satellite-borne instruments has transformed the field,
enabling the construction of such products as the MODIS Land Cover Type v005 (MLCT) dataset,
which provides a 15-arc-second (15”) resolution characterization of the entire globe, with each
pixel characterized by a primary class, secondary class, and confidence level for the primary class
assignment.

The MLCT product is constructed by applying an automated decision-making algorithm to
satellite sensor data. The algorithm is trained by spatially sparse ground truth data sets that
provide exemplars for the various classification schemes. This approach enables higher resolution
and accuracy than approaches based on, for example, census data. However, it also has limitations
when it comes to specific applications. For example, an investigator studying economic factors
driving land use change may need to know what area is used in different regions for different
crops—information that MLCT, with its single “cropland” class, does not provide. It is feasible, in
principle, to differentiate between different crops, and indeed that information is available in other
datasets, such as 175Crops2000 or SPAM, even the 2001 National Land Cover Database (NLCD)
to a lesser degree. However 175Crops2000 and SPAM are completely silent on non-agricultural
use and cover types and the NLCD is the product of a piecewise synthesis that required extensive
manipulation to match the edges of its mapping zones and therefore certain classes in certain areas
have systematic idiosyncracies and cannot be considered spatially homogeneous in its formulation.
Indeed, every dataset, however produced, will inevitably exhibit limitations for many purposes by
virtue of the design of the classification scheme and algorithm that was used to produce it.

This situation was understandable when dataset sizes and associated computational require-
ments meant that the production of a new dataset was extremely expensive. However, rapid
increases in storage capacity and computational power mean that it is now feasible for even small
teams to produce their own datasets. Thus, we suggest that the production of land use datasets
should become a commonplace activity. An investigator requiring data of a certain type should
be able to synthesize the required dataset via the application of a specified set of transformations
to data obtained from various sources. These transformations may include, for example, the ag-
gregation or disaggregation of data in order to convert between resolutions; the reclassification of
pixels, either through a simple reassignment or more complex logic; the decomposition of compound
classes into their constitutive classes; and guided corrections in order to satisfy global or regional
constraints implied by other datasets, such as an agricultural census. Regardless of the method,
what is important is that it is well-defined, reproducible, and suitable for the purpose at hand.

Such considerations led us to produce our own custom dataset, PEELg, which we produce via
a multi-step process that uses four distinct processes to combine information from three different
data sets, MLCT, NLCD, and 175Crops2000:

Reclassification: Because we are dealing with LULC classifications based on different sets of class
defintions we seek to find a common basis on which to compare their contents. This is done
by defining a simplified set of LULC classes and mapping the classes in the original data sets
to them. This simplified classification is suitable for our economic land use change forecast
models because subtle distinctions between ecological roles of different types of forests, for
example.

Aggregation: For purposes of this discussion aggregation simply refers to moving to a lower
resolution raster representation while preserving as much information about the composition
of the pixels as possible. This includes translating categorized pixels directly to fractional
areas for the larger grid cell in which they fall, or calulating sub-pixel fractions for pixels



whose classification is less than certain and an alternative is offered, which we will treat as
a mixture, and then upscaling to the coarser resolution. Although this results in a loss of
locational precision it preserves more information than a more naive aggregation, such as
accepting the class that occurs most frequently, i.e. the mode, as the representative class.

Decomposition: The need for decmposition arises when a class defintion is a hybrid of the fun-
damental types that we have chosen for our simplified classification. This occurs in two cases
in our study. First, MLCT features a “cropland / natural vegetation mosaic” class that we
wish to unpack in order to assign a portion of its area to agricultural production and the rest
to natural covers. Upon deriving a more complete estimate of total cropland area, cropland is
further decomposed into crop sub-classes according to local farming practices. Decomposition
is distinguished from disaggregation, or downscaling, by holding the spatial resolution con-
stant and making no attempt to impart additional spatial precision to sub-cell distributions
of LULC phenomena.

Correction: By selectively incorporating aspects of higher-resolution data sets whose complete
representation is unsatisfactory for some reason, but has an advantage in resolving particular
classes by virute of resolution and ancillary data used as prior probabilities in its classification
algorithm, we are able to make adjustments to the landscape composition indicated by the
data set chosen as the foundation for this method. These corrections are primarily motivated
by a recognition of biases against finely detailed features that get washed out by the coarser
resolutions of the starting data set’s characterization.

We restrict our construction of PEELg to the USA because it is in that region that we have
access to the NLCD, 175Crops2000, and AgLand2000 data sets that we leverage to improve on
the global MLCT product. We further restrict our analysis to the conterminous US because of the
relative insignificance of agricultural activity in Hawaii and Alaska. However, similar methods can
be applied in other regions, given suitable data sources. The technique presented in Section [4] can
then be applied globally and also extended in time to convert the proceeding years of the MLCT
time series to a form useful to various analyses including our own LULC analysis.

In the sections that follow, we describe in greater detail the data sets that we use to construct
and evaluate PEEL (Section ; the algorithm that applies the procedural concepts outlined above
(Section [3]) to merge information derived from both MLCT and NLCD; and an evaluation process
(Section . We summarize our computational tools in Section 5 and conclude in Section |§| with a
discussion of the merits of this endeavor and of future avenues of research based thereon.

We next describe a procedure for combining information from the data sets described in Section 2]
using the same sub-pixel analysis data structure at 5’ resolution for cUSA to produce a data set that
exhibits high accuracy in the distribution of agricultural production according to both NLCD and
Agland2000; provides a realistic characterization of other uses and covers as suggested by MLCT;
achieves agreement with particular fine-scale aspects of NLCD; and is thus able to resolve crop
types using the 175Crops2000 dataset.

In Section we describe a method for selectively incorporating cover fractions for particular
classes from NLCD due to a perceived underestimation of those classes by MLCT due primarily
to its lower resolution. Those classes are water, wetland, and urban, occasionally abbreviated as
WWU in what follows. In the PEEL classification we have broadened the “urban” class relative to
the MLCT/IGBP definition to include rural transportation infrastructure, small towns, farmsteads,
etc. thereby including lower-density development. Accepting NLCD’s quantification of these classes
as truth is intended to counteract a perceived overestimation of cropland area in MLCT caused,
at least in part, by the fact that substantial ancillary land that may be associated with cultivated



Data set Sensor Resolution  Time Span

UMD Global Land Cover 1998 * AVHRR lkm 1981 — 1994 (composite)
Global Land Cover 2000 ° SPOT lkm Nov 1999 — Dec 2000 (composite)
National Land Cover Database © Landsat 30 m 2001
MODIS Land Cover Type v005 ¢  MODIS (Aqua & Terra)  500m 2001 — 2008 (annual)

~ “|Hansen et al|[2000] “|Homer et al|[2004] 2007]
®|Bartholomé and Belward| [2005] 4| Friedl et al[[2010],|LP DAAC|[2008]

Table 1: Summary of global LULC data sets.

land but is not directly involved in crop production is included in the MLCT crop class. The result
is an adjusted version of MLCT as amended by these NLCD offsets.

Finally Section [3.5shows how information from the 175Crops2000 data set is used to decompose
the cropland layer in order to characterize the distribution of production of major crop commodities,
corn (maize), soybean, wheat, rice, sugarcane, other cereals, and other field crops.

Throughout, we use decreasing root mean squared error (RMSE) figures and correlation hexbin
plots to show that our complete characterization of the landscape is improving in accuracy with
respect to both the NLCD and Agland2000 datasets.

2 Land Use and Land Cover Datasets

Recent years have seen a significant increase in the availability of global land cover data sets
including the University of Maryland Global Land Cover Classification, Global Land Cover 2000
(GLC2000), and MODIS Land Cover Type (MLCT). At the regional level the National Land cover
Database (NLCD) provides high-resolution LULC data for the United States and Puerto Rico.
We summarize several such data sets in Table The proliferation of these data sets reflects the
diversification and technological advances among space-borne sensors in recent years, resulting
in improved resolution, both spatial and temporal, as well as innovation in post-processing and
classification algorithms that transform raw sensor data into the thematic data that is readily
applicable to modeling.

There has also been a proliferation of data sets that describe the distribution and intensity of
global agricultural activity. Some such as the Global Irrigated Areas Map (GIAM) |Thenkabail
et al) 2008] and the Global Map of Rainfed Crop Areas (GMRCA) [Biradar et al. 2009] are the
product of applying classification techniques to large collections of remote sensing and GIS data.
Others such as Agricultural Land in the Year 2000 (Agland200) |Ramankutty et al.,|2008], Harvested
Area and Yields of 175 Crops (175Crops2000) [Monfreda et al., [2008], and the Spatial Production
Allocation Model (SPAM) [You et all 2006] are further informed by agricultural production data
published at national and sub-national levels and disaggregated to grid cells within those boundaries
according to an optimization method described by |You and Wood| [2006]. Such data sets can
complement those of the general comprehensive LULC category by offering additional information
on how to differentiate areas of cropland according to cultivars, and farming practices such as crop
rotation, multiple cropping, and irrigation.

We use four data sets in this work: three (MLCT, NLCd, and 175Crops2000) to construct
PEELg, and one (AgLand2000) to evaluate the quality of the PEELg product. We describe these
four data sets here.

The 2001 MODIS Land Cover Type v005 (MLCT) dataset is a 500m (~ 15”) resolution
land cover dataset. We base our method on MLCT because of its global coverage, its annual time
series, and its free availability. In the future we plan to extend PEELg in both time and space,



so MLCT is the clear choice as a foundation data set. MLCT provides three data values for each
pixel: a primary classification, a percentage measure of classification confidence, and a secondary
classification. Among other alternatives MLCT classifies its pixels according to the International
Geosphere-Biosphere Programme (IGBP) classification scheme . The confidence level
is intended as a measure of the likelihood of classification error. As we describe in Section XX, we
reinterpret this information as an estimate of the fraction of sub pixel area that is covered by the
primary class.

As we will see, MLCT characterizations for land cover classes in the US are somewhat unsatis-
fying for those classes that frequently occur at scales too small to resolve with the 500m MODIS
instrument on which the MLCT is based. We turn to the NLCD to resolve these higher resolu-
tion features, but since a similar dataset is not yet available globally, this step of the algorithm
is designed as a validation/feedback step, rather than a core piece of the algorithm, which can be
performed regionally wherever high resolution data sets are available.

The National Land-cover Database 2001 (NLCD) provides a higher-resolution (30m, ~
1.25"”) snapshot of LULC across the cUSA study area, plus Alaska, Hawaii and Puerto Rico, circa
2001. Because NLCD’s classification was informed by ancillary data sets such as population density,
buffered roads, and the National Wetland Inventory [Homer et al., 2004], we expect that it will
give better estimations of aggregate area for detailed features like rural transportation networks and
small stream and wetland features. Although it is unclear from Homer et al|[2004] what ancillary
data was applied in what constituent mapping zones of NLCD, we accept its representation of these
fine details to be the best available. As we describe in Section [3.3] we apply differences between
NLCT and MLCT data as a correction, in order to compensate for MLCT’s bias against these
finely detailed structures due to its resolution.

The Agricultural Lands in the Year 2000 (Agland2000) |[Ramankutty et al.| [2008] is a 5'-
resolution data set that merges satellite-derived LULC classifications with census data of arable
land and permanent crops compiled at national or sub-national levels according to availability of
such data at or near the turn of the last century. It uses two LULC classification data sets derived
from remote sensing data as inputs, an older version of the MLCT (known as BU-MODIS) and the
GLC2000 data set mentioned in Section [I} The “pasture” class in Agland2000 likely has much in
common with the “open” class from MLCT but we do not employ that data in this analysis. Note
that the cropland aspect of Agland2000 is used as an input into the classification algorithm of the
MLCT version that we use here. We acknowledge the possibility of circularity when comparing the
two, but because of its basis in census data we will use the cropland component of Agland2000 as
a type of observational product for the purposes of evaluating our incremental adjustments to the
maps we derive from MLCT in Section[d] Figures [I] and [I§] show the distribution of both cropland
and pasture areas for the detail and full study areas respectively.

doro
ammysed

Figure 1: Agland2000 distribution in detail area.



The Harvested Area and Yields of 175 Crops (175Crops2000) dataset [Monfreda et al.,
2008| provides 5'-resolution information about crops grown globally. As we describe in Section
we use this data to decompose PEELg cropland area fractions. It is not possible to use this data
directly because it reflects only harvested area and so ignores various types of ancillary agricultural
land. For our purposes it provides relative proportions for the decomposition of the cropland
fractions at the grid cell level. Rather than considering the full array of 175 crops we consider only
corn, soy, wheat, rice, and sugarcane individually, combine other cereals into their own class, and
combine all remaining crops as a catch-all “other” category. Field crops are distinguished from
orchard / plantation crops that would likely fall under areas classified by MLCT as forest or shrub
in this step. Table 2| specifies how the 175 crops in the \Monfreda et al. [2008] data set are collected
into crop sub-classes in PEELg. Realistically many of these crops are not present in the cUSA
study area, but we provide the complete mapping to our crop sub-classes for sake of completeness.

Sub-class  Crops

maize maize

wheat wheat

rice rice

other barley; buckwheat; canary seed; cereals nes; fonio; millet; mixed grain; oats; pop corn;
cereals quinoa; rye; sorghum; triticale

soybean soybean

sugarcane sugarcane

forage alfalfa for forage; beets for fodder; cabbage for fodder; carrots for fodder; clover; forage

products nes; grasses nes; green oilseeds for fodder; legumes nes; maize for forage; mixed
grasses and legumes; rye grass for forage; sorghum for forage; swedes for fodder; turnips for
fodder; vegetables and roots for fodder

other field anise, badian and fennel; artichokes; asparagus; bambara beans; beans, dry; beans, green;

crops broad beans, dry; broad beans, green; cabbages; cantaloupes and other melons; carrots;
cassava; castor beans; cauliflower; chickpeas; chicory roots; chillies and peppers, green; coir;
cotton; cow peas, dry; cucumbers and gherkins; eggplants; fibre crops nes; flax fibre and
tow; garlic; ginger; green corn (maize); groundnuts in shell; hemp fibre and tow; hempseed;
jute; jute-like fibres; lentils; lettuce; linseed; lupins; melonseed; mushrooms; mustard seed;
oilseeds nes; okra; onions and shallots, green; onions, dry; peas, dry; peas, green; pepper-
mint; pigeon peas; pimento; poppy seed; potatoes; pulses nes; pumpkins, squash, gourds;
rapeseed; roots and tubers nes; safflower seed; sesame seed; spinach; string beans; sugar
beets; sugar crops nes; sunflower seed; sweet potatoes; taro; tobacco leaves; tomatoes; veg-
etables fresh nes; vetches; watermelons; yams; yautia

shrub abaca (manila hemp); agave fibres nes; bananas; berries nes; blueberries; cocoa beans; coffee,

crops green; cranberries; gooseberries; grapes; hops; mate; nutmeg and mace and cardamons; pep-
per; pineapples; plantains; pyrethrum, dried flowers; ramie; raspberries; sisal; strawberries;
tea; vanilla

tree crops  almonds; apples; apricots; areca nuts (betel); avocados; brazil nuts; carobs; cashewapple;
cashew nuts; cherries; chestnuts; cinnamon (canella); citrus fruit nes; cloves; coconuts; cur-
rants; dates; figs; fruit fresh nes; fruit tropical fresh nes; grapefruit and pomelos; hazelnuts
(filberts); kapok fibre; kapokseed in shell; karite nuts (sheanuts); kiwi fruit; kolanuts; lemons
and limes; mangoes; natural gums; natural rubber; nuts nes; oil palm fruit; olives; oranges;
papayas; peaches and nectarines; pears; persimmons; pistachios; plums; quinces; sour cher-
ries; spices nes; stone fruit nes, fresh; tang.mand.clement.satsma; tung nuts; walnuts

nes: "not elsewhere specified”

Adapted from |Monfreda et al.| [200§].

Table 2: Crop sub-classes for simplifying 175Crops2000.



The USDA Major Land Uses (MLU) dataset [Lubowski et al. 2006] is a consistent census-
based time-series record of US agricultural land uses produced by the USDA Economic Research
Service (ERS) going back to 1945. The MLU contains data by state and distinguishes land use
among 6 broad categories: cropland; grassland, pasture, and range; forest-use land; special-use
land; urban land; and other uses. Additionally, important sub-categories for relating these census-
based land-use categories to satellite based land-cover categories include cropland pasture, rural
transportation areas, and farmsteads, farm roads, and lanes. For example, we include parks and
other protected forest areas with the forest class, we distinguish cropland pasture from both crop-
land and pasture land for better comparison with NLCD statistics, we combine rural transportation
networks and other developed areas, farmsteads, and other developed uses with the urban cover
class, and we include miscellaneous lands such as marches, swamps, deserts, and lands designated
for defense or other special purposes as other land cover. We note that MLU does not include
coastal or inland water bodies, and so has a lower overall count of land area as compared to the
satellite sets.

3 Our Algorithm

Our general algorithmic approach can be summarized as follows. First, reclassify the categories
of the MLCT and NLCD data sets to a common scheme, calculate per-pixel, per-class areas at
the native resolutions, and aggregate the new classification to the 5 grid. A challenge is that
classification definitions are sometimes subtly different between data sets, making direct comparison
across data sets somewhat subjective.

1. Prepare MLCT data
(a) Reproject to geographic coordinates and mask cUSA study area
(b) Reclassify to PEEL classification (Table [3)

(c) Calculate per-pixel, per-class areas at native resolution as a function of parameter A,,;,
(see Sec. for details)

(d) Aggregate the new classification to the 5 grid, combining MLCT primary class, confi-
dence, and secondary class values

2. Prepare NLCD data for use as correction layer
(a) Reproject to geographic coordinates and mask cUSA study area
(b) Reclassify to PEEL classification (Table
(c) Calculate per-pixel, per-class areas at native resolution
)

(d) Aggregate the new classification to the 5" grid (no secondary layer, so set A, = 1)

3. Combine data sets to produce PEELg
(a) Adopt MLCT as PEEL§

(b) Selectively incorporate into PEEL§ cover fractions for water, wetland, and urban classes
from NLCD, to produce PEELg.
(¢) Decompose mosaic fraction into crop and natural cover components

d) Use 175Crops2000 data to decompose the cropland class in PEELS to produce the final
0
PEEL,.



We begin with the global MLCT product which provides categorical LULC classification at 15”
(~500m) resolution plus a secondary cover type for each pixel, and a confidence measure for the
primary type. The first step in the algorithm is a systematic attempt to incorporate this full depth
of information offered by MLCT. Rather than interpret the secondary classification as the next
most likely possibility we accept the triplet as an expression of the sub-pixel composition of that
area. Aggregation of MLCT from 15” to 5’ blurs the spatial precision implied by this formula. We
treat the local 20 x 20 x 3 array as a probabilistic expression of the local landscape composition.
We will show that this approach, given a principled assumption about the relationship between
confidence level and the allocation of sub-pixel area among the detected classes, improves the
estimates of acreages in aggregate as well as their spatial distributions, particularly for cropland.
See Section [3.11
3.1 Preparing the MODIS Land Cover Type

The 2001 MLCT data set comprises a set of tiles in a global equal-area sinusoidal projection. To
prepare this data set for use in this study, we first patch those tiles together and reproject the
resulting mosaic to geographic coordinates. We then extract the conterminous USA study area,
which we define as those 5’ grid cells that intersect with the cUSA polygons in version 1 of the Global
Administrative Areas (GADM) vector data set |Higmans et al. 2009]. This area includes the water
bodies on the American side of the international border across the Great Lakes, but not oceanic
waters beyond the coastal grid cells that intersect with any land mass. To illustrate the process of
converting these data sets from their original representation, we shall also often include maps of an
area of southeastern Michigan to show greater detail through each step of the process. We chose
this region for its diversity of land covers and uses, its relative diversity of agricultural commodities
across its significant cropland area, the significant presence of the MLCT/IGBP mosaic class to
illustrate our method for its decomposition, and its familiarity to the authors. Where space allows,
we also present limited maps of variables over the conterminous USA. A more detailed set of maps
will be provided online upon publication.

3.1.1 Reclassification of MLCT to PEEL classes

Table[3|shows the mapping of the IGBP classes used in MLCT to our PEEL classification. Because
our primary interest is in agriculture we collapse the five forest categories into a single class. We
assign woody savannas and savannas to the shrub and open classes, respectively; these assignments
are supported by the IGBP class definitions due to the overlap in the forest canopy cover for those
classes. These assignments makes sense in the context of LULC modeling because the ecological
roles, potential uses, and conversion costs of the two savanna types are dissimilar. We combine
areas of ‘permanent snow and ice’ with ‘barren or sparsely vegetated’ areas, which includes deserts,
to form the PEELg ‘barren’ class, based on their shared characteristics of low population density
and low intensity of economic activity.

Figure [2f shows the result of reclassifying the MLCT data for our detailed study area. This area
is dominated by the crop class in the north and the mosaic class to the south with scattered forests
and pockets of development throughout. The urban complex of Port Huron, Michigan and Sarnia,
Ontario is visible in the southeast corner. Areas in the northern and central sections of the map,
classified as crop with 100% confidence have null values in the secondary class (white cells).

Note that areas in the northern and central sections of the map that were classified as crop in
the primary layer have null values in the secondary class, shown as white cells. These cells coincide
with values of 100% confidence in the third layer of the data, so their areas are assigned entirely to
the primary class. The high prevalence of 100% confidence cells for the crop class leads us to expect
that MLCT will over-estimate cropland, since any such large areas of cultivated land are certainly



Adapted from |Friedl [2002].

MLCT/IGBP PEEL
0  water water
1 evergreen needleleaf forest
2 deciduous needleleaf forest
3 evergreen broadleaf forest forest
4 deciduous broadleaf forest
5  mixed forests
6  closed shrublands
7  open shrublands shrub
8  woody savannas
9  savannas
10 grasslands open
11 permanent wetlands wetland
12 croplands crop
13 urban urban
14 cropland / natural vegetation mosaics mosaic
15 permanent snow and ice barren
16 barren or sparsely vegetated

Table 3: Reclassification of MLCT/IGBP to PEELy.

interspersed with homesteads, fence lines, small wood lots, roads, and other such cultural features.
For example, in areas such as this that were made available for settlement in the 19th century
according to the Public Land Survey System (PLSS) we expect to find a more-or-less regular grid
of rural roads at one-mile intervals, which is readily visible in maps and aerial photography of the
region. It is admissible to argue that the IGBP cropland class is intended to indicate an overall
function of the landscape rather than to measure areas directly employed in production, so in that
sense we can say that the PEEL cropland has a different definition because we seek to reconcile
cropland areas with agricultural census data.

It is possible for primary and secondary classes to be assigned to the same category because of
the reclassification step. When a pixel indicates the forest class for both its primary and secondary
classifications it simply reflects a distinction between sub-types of forest in the original data, for

water
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Figure 2: MLCT primary reclassified cover (left), secondary reclassified cover (middle), and primary
cover classification confidence(right) for detailed evaluation area.
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example evergreen and deciduous. It is worth noting that crop and mosaic classes often appear in
pairs (primary crop, secondary mosaic and vice versa). This coupling is not surprising given that
mosaic areas are comprised of 40-60% cropland by definition so their exemplars must necessarily
be near one another in the classification space. We will explore this dynamic further in

Figure shows maps of the primary classification, secondary layer, and confidence level for
the entire cUSA study area. For improved visualization of the relative distributions of particular
classes, we also provide, in Figure facet maps for the individual classes. Familiar generalities
of cUSA geography are apparent in this maps, such as the prevalence of forests in the east and
northwest, cropland in the midwest, shrub lands in the southwest, and open lands across the
west. The mosaic class is concentrated in the eastern portion of the study area; we attribute
this phenomenon to greater population density, topography, and historical patterns of settlement
resulting in characteristically smaller parcels and a greater degree of mixing among agricultural
uses and natural covers.

3.1.2 Aggregation of MLCT to PEEL resolution

MLCT has a nominal resolution of roughly 500m that equates to 15" at the equator, a conveniently
even factor-of-20 division of the 5" grid to which we wish to aggregate. Recall that for each pixel,
MLCT provides three data values: a primary classification, a measure of confidence up to 100%,
and a secondary classification. Our aggregation strategy aims to extract as much information as
possible from the (20 x 20 = 400 MLCT pixels) x (3 values) = 1200 data values that MLCT
provides for each PEEL cell. MLCT’s secondary cover type was originally intended to express the
most likely alternative to the primary type |Fried! et all|2010], with the confidence level providing
an indication of per-pixel classification error. We propose an alternative interpretation where the
sub-pixels areas for the primary and secondary cover types in pixel x are given by:

AP(*’L") = Apin + (1 = Apin)c(x) (1)
As(z) = 1-4p(2) (2)

where ¢(x) is the confidence level of the primary classification on (0,1] and A, represents the
minimum area fraction to be assigned to the primary class given c(x)=0. A, and A are the
fractional areas assigned to the primary and secondary classes respectively. A given class must
comprise at least 50% of the pixel area in order to be considered primary, therefore setting A,,;,=0.5
affords maximum consideration to the secondary class in this scheme. Simplifying the equations
by substituting this value gives:

) = A )
Aw) = 1- Ay = 172D (@

Instances of ¢<0.20 are rare as shown by Figure [3| for a particular subset of MLCT pixels (see
Section , so generally the primary class will be assigned more than 60% of the MLCT pixel
area—which is consistent with MLCT’s definition of “primary class,” which is that it covers no less
than 60% of a given pixel  |Friedl, |2002]. These definitions assume that the relationship between
classification confidence and the sub-pixel fraction of the primary class is a linear, monotonically
increasing function. Other monotonic functions could be used, but the differences would be second-
order refinements to this formulation.

In the analysis that follows we compare the product of these assumptions with the case of
Anin=1.0, which gives zero consideration to the secondary class and is therefore indifferent to the
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Figure 3: Histograms of the confidence measure for all cells in the cUSA classified as primary type
crop, secondary type mosaic (left) and as primary type mosaic, secondary type crop (right).

confidence level. In the interest of brevity, we do not consider here intermediate parameterizations
in which the secondary class is used, but given less than maximum consideration. Still, an advantage
of our algorithm is that inclusion of the secondary class can be varied continuously by Ain.

For a clearer intuition of this sub-pixel area allocation procedure, consider the histograms of
the confidence measures for MLCT pixels with primary/secondary classes equal to crop/mosaic
or mosaic/crop, shown in Figure [3| These pixels are atypical in a sense because the mosaic class
is itself defined as a hybrid of crop and natural cover that contains about 40-60% cropland. By
pinning this fraction at 50% our algorithm says that the fractional area of crop in crop/mosaic cells
as a function of the confidence ¢(x) is:

Agpop(a) = -7 ;(ﬂf) L1 —40(96) _ 3+:(x) .

since half the mosaic class is going to crop. Similarly for mosaic/crop cells:

Aropl) = & +40(“3) L1 —20(%) 3 —4c(z) .

implying that, at minimum, these cells are majority cropland.

Computationally the process of converting the reclassified maps to sub-pixel fractions at the
desired 5’ resolution is a three-step process. The first step is to calculate the fraction of the primary
cover type as a function of the classification confidence as described above, independently of the
primary and secondary classifications. Next, a sub-pixel fraction for each cover type is calculated
at the original 15” resolution, which is zero for all classes but the one or two classes indicated.
Aggregating to a coarser resolution is a simple matter of calculating the means of these fractions
over the intersecting 15” pixels within a given 5 grid cell. Figure |4/ emphasizes the difference
between the choice of A, = 0.5 and A.nin = 1.0 for the calculation of the sub-pixel fractions
and their aggregation to 5" with a difference map. Positive values in the map indicate areas where
Amin = 0.5 produced a greater value. Considering the secondary class results in a shift of up to
10% of total cell area from crop to mosaic in the north of the detail area and vice versa for the
southern portion.

3.2 Preparing NLCD

Our reclassification for NLCD, shown in Table [4] is more complicated than that used for MLCT
(Table . Although NLCD has fewer forest classes than MLCT, they are equally unambiguous. We
equate four NLCD developed land classes with the PEELy “urban” class, to represent developed
areas of all densities. The result of this reclassification is shown in Figure [5| at native NLCD
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Figure 4: Difference of aggregated sub-pixel fractions for A, = 1.0 vs. Ay = 0.5, positive when
f(Apmin = 0.5) is greater.

resolution. Many detailed features missing from the 500m MLCT product are apparent in this
figure, including rural transportation networks and small wooded, water, and wetland features.

Figure [17] shows the result of reclassifying NLCD and aggregating it to 5" sub-pixel fractions for
t]na f1111 ~ATTQA

11¢  water water
41 deciduous forest
42 evergreen forest forest
. water 43 mixed forest
B forest 52 shrub/scrub shrub
] shrub 71  grassland / herbaceous open
open 90  woody wetlands
. wetland 95 emergent herbaceous wetlands wetland
crop 82 cultivated crops crop
Bl oo nih 81  pasture / hay hay
mosaic 21 developed, open space urbanoepen
. barren 22 developed, low intensity urban; e,
B hay 23  developed, medium intensity urbaneq
urban_open 24  developed, high intensity urbanpgp,
4 . urban_low 12 perennial ice/snow
. urban_med 31*  barren land barren

834
-83.2
-83.0
828
826

Adapted from |H0mer et al.l ﬂ2004l].
¢ Additional coastal classes exist in NLCD
but are not present in the lower 48 states.

Figure 5: NLCD reclassified at native resolution. Table 4: Reclassification of NLCD.

Though repeating the aggregation process for the entire study area is computationally expensive
due to the NLCD’s high resolution, the algorithm is precisely the same as for refactoring the MLCT
when considering only the primary cover type, i.e. setting A, = 1, so we will not describe it in
further detail here. The effect of the aggregation for the detailed study area is shown in Figure [6]
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Figure 6: NLCD covers (left) and aggregated cover fractions (right) shown separately for the
detailed study area.
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Figure 7: NLCD offsets (log scale). Water, wetland, and urban cover fractions are tuned to match
those in NLCD, and the difference is accommodated as described in Section
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3.3 Applying NLCD Offsets to PEEL

Table [5] shows that MLCT is negatively biased in the total areas assigned to water, wetland, and
urban features relative to NLCD. Visual inspection shows that features of these classes tend to have
smaller characteristic dimensions causing them to be overlooked in MLCT due to its resolution.
The most obvious example is the rural transportation networks in areas surveyed under the Public
Land Survey System (PLSS) where roads have been laid out on a generally regular grid of square
miles. PEELj includes this infrastructure in the urban class as another form of developed land.

To merge this information from NLCD we first accept the areas for water, wetland, and urban
classes in the reclassified, 5'-aggregated version of NLCD that we have computed as truth, and then
calculate offsets for those classes versus our 5 MLCT data by direct subtraction. Where NLCD is
greater the difference will be positive and so a positive offset will be added to the fraction already
present for any one of the “truth” classes from NLCD. The other classes are then adjusted so that
they are present in proportion to each other as indicated by MLCT but in the area remaining after
accepting the water, wetland, and urban areas from NLCD. Figure [7|shows the spatial distributions
of the offsets calculated based on our assumptions about the water, wetland, and urban classes
in NLCD. The logarithmic scale used in these maps makes apparent both areas of significant
adjustment, greater than 10%, and the extent to which small adjustments on the order of 1-
5% occur. We see the detailed structure of drainage networks in the water class and population
centers in the urban class which could easily be confused with the vegetative classes in the MLCT
classification, perhaps in heavily wooded suburbs where transportation infrastructure is obscured
and difficult to resolve, for example. The offsets for the NLCD truth classes (urban, water, and
wetland) are generally positive, although not strictly so because the algorithm does not preclude
the possibility that MLCT may locally overestimate these classes in particular regions and still
suffer an aggregate deficit relative to NLCD.

3.4 Decomposing the MLCT mosaic class

The MLCT “cropland /natural vegetation mosaic” class is problematic for the economic models for
which PEELy is intended, because it combines developed land use and natural land cover. This
class is defined as a hybrid of cropland and some mixture of natural covers (forest, shrub, or open)
with no single component exceeding 60% [Friedll [2002]. We wish to differentiate the cropland from
the natural vegetation in order to calculate a more meaningful total for cropland area and thereby
eliminate the mosaic class from the final tabulation. To this end, we make three simple assumptions

about_the composition of area identified as mosaic lands:
1. o of mosaic, area is assigned to the crop class. i i i .
2. The other 50% 1s a blend of forest, open, and shrub in relative proportion to the expression

of those classes in the same 5’ cell. | , L.
3. In the absence of any natural classes in the 5 cell the natural component of the mosaic is an

equal blend of all three.

We make these simplifying assumptions so that we can proceed with the evaluation of this analytical
framework. It might be interesting to vary the proportion of mosaic land allocated to crop land.
However, we have no principled basis for doing so, despite the definition’s implication that this
proportion is variable. Our chosen 50% level reflects the assertion that the mosaic is a cultural
class grouped with cropland and urban in the IGBP classification scheme without overstating the
degree of development. MLCT provides adequate variability in this dimension by commonly pairing
cropland and mosaic in the primary/secondary class data. The second assumption imposes that
15” mosaic cells’ non-crop portion will have the same relative composition of forest, open, and
shrub as the non-mosaic portion of the 5 grid cell in which it falls. Therefore mosaic pixels in a
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5" cell where of the three non-crop mosaic components only forest is found are assigned 50% crop
and 50% forest.

3.5 Decomposition of PEEL; Crop Fractions

The final step is to further dissaggregate the cropland layer into different types or categories of crops
using cover fractions calculated from 175Crops2000. Double-cropping is ignored by normalizing
the crop fractions by the sum of all crops, which can exceed unity in instances of intense double-
cropping. The predominant double-cropping system in the cUSA to our knowledge is soy followed by
winter wheat, but there may be others such as multiple cropping of rice in the southern extremes of
its range. In cells where soy and wheat are double-cropped alongside other cropping systems, their
relative prevalence among the cultivated land in the cell will likely be somewhat underestimated
as compared to that given in the 175Crops2000 data set. This issue bears further study. The crop
sub-class layers are shown as facets in Fig.

4 Analysis

We have hypothesized that there is information worth capturing in the secondary class and classifi-

cation confidence level provided by MLCT. We test this hypothesis via comparison with AgLand2000,
which we view as representing ”truth” for the purposes of this analysis. We also evaluate the ac-

curacy of cropland distribution in MLCT as a function of the A,,;, parameter, contrast accuracy

obtained with maximum incorporation of the secondary class in our analytical framework, as modu-

lated by the MLCT classification confidence data (A, = 0.5) versus considering only the primary

classification (A, = 1.0). We evaluate results on the basis of root mean square error (RMSE)

metrics calculated relative to the distribution of cropland given in both NLCD and Agland2000.

4.1 Comparison of Aggregate Areas

We start by tabulating the aggregate areas by class for MLCT, NLCD, and Agland2000. After de-
composing the mosaic class MLCT indicates 495.4 Ma (200.5 Mha) of cropland for A,,;,=0.5 and
488.1 Ma (197.5 Mha) for A,,;,=1.0 in the cUSA in 2001, the NLCD indicates roughly 448.9 Ma
(181.7 Mha) combined of ’cultivated crops’ and intensively managed 'pasture/hay’, Aglands2000
indicates roughly 446.5 Ma (180.7 Mha) of cropland, and the USDA MLU [Lubowski et al., 2006]
dataset indicates roughly 441.3 Ma (178.6 Mha) of combined cultivated crops and ‘cropland pas-
ture’. The areas for all the major comparison and intermediate data sets, and most parameter
choices considered here, are shown in Figure |8, and key values are collected in Table

We are primarily concerned here with the ~10% overestimation of cropland in MLCT, especially
in light of the relative agreement among the other products considered here. The inability of MLCT
to resolve rural transportation networks, minor settlements, and small water or wetland features
is a major contribution to its surplus of cropland acreage indicated. Due to its greater resolution,
~30m vs. ~500m, NLCD is better suited to discerning developed areas in rural landscapes, ranging
from rural roads to farmsteads to small communities that do not show up in MLCT. A total area
of roughly 75.4 Ma (30.5 Mha) of land developed to one extent or another that remains after
subtracting the MLCT urban class from all developed classes in NLCD. Applying this difference
as an offset brings us signficantly closer to the expected acreage under cultivation in 2001; see
Section This offset also brings the national area of urban and developed cover much more in
line with the USDA MLU census data.
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Figure 8: Total Acreages by Map and Cover.

MLU Agland MLCT MLCT MLCT WWU MLCT
2002 2000 NLCD Anin=1 A,in=-5 No Mosaic Offset Adjusted PEELg
water 96.5 75.0 74.3 74.3 22.3 96.5 96.5
forest  657.1° 513.2 353.6 344.7 410.8 -44.7 300.1 355.7
shrub 420.1 341.8 358.7 387.2 -23.8 334.9 358.0
open 584.2 557.1 291.2 545.8 516.9 538.7 -21.0 495.9 514.9
wetland 95.0 11.0 26.0 26.0 69.0 95.0 95.0
crop 379.5¢ 446.5 310.8 369.6 378.9 495.4 -39.0 339.9 437.6
pasture  61.8 ¢ 138.4
urban 96.9¢ 102.8¢ 29.8 27.3 27.3 75.4 102.8 102.8
mosaic 237.0 232.9 -37.4 195.5
barren 24.5 28.9 32.8 32.8 -0.9 31.9 31.9
other 112.07
(all) 1893.8 1003.7 1992.5 1992.5 1992.5 1992.5 0.0 1992.5  1992.5

¢ Data from the USDA MLU database does not include coastal or large inland water bodies.

b We include parks and other protected forest areas with the forest class.

¢ For MLU we distinguish ’cropland pasture’ from harvested and idle cropland for better comparison.
4 We combine rural transportation networks and other development with the urban class.

¢ This includes all NLCD developed classes: high, medium, and low density and ’developed open’.

f This includes misc. lands, marshes, swamp, desert, etc., plus 14.8 Ma designated for defense or
other special purpose.

Table 5: Effect of NLCD offsets on total acreages, Anin = 0.5 everywhere, except where explicitly
noted.
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4.2 Comparison of Root Mean Square Errors

The purpose for processing the MLCT for two values of A,,;, as described in Section [2]is to evaluate
whether or not information from the secondary cover type contributes positively to the accuracy of
the data set we seek to synthesize. The primary objective of this synthesis is to achieve accuracy
in cropland distribution. Although MLCT overstates cropland acreage for both A,,;,=0.5 and
Amin=1.0, the discrimination among the two is made by the distribution of errors rather than
the aggregate error. Figure [J] shows the cell-by-cell differences in cropland fractions between the
Apin=0.5 MLCT-derived data set that we have calculated after mosaic decomposition and the
Agland2000 and NLCD cropland layers (the map for A,,;,=1.0 cannot be distinguished from this
visually). To summarize and compare these errors we calculate the root of the mean squared error
(RMSE) given by:

RASE — 1/ Zima (% — 00
n

(7)

where 6; are the predictions derived from the respective MLCT derivations and 6; are the obser-

vations, taken from the Agland2000 or NLCD data sets in turn. These RMSE values are collected
later in Table [6] from which its clear that choosing A, =0.5 improves the spatial correlation of
the MLCT cropland layer compared to both Agland2000 and NLCD.
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Figure 9: Difference between MLCT (no mosaic, A,;,=0.5) and Agland2000 (left) and NLCD
(right) crop.

WwuU* RMSE RMSE
offset Amin  (Agland2000) (NLCD)
no 1.0 0.180 0.175
no 0.5 0.165 0.161
yes 0.5 0.151 0.149

¢ ?"WWU offset” refers to the water, wetland,
and urban offsets calculated from NLCD and applied
to the data product in Sec.

Table 6: RMSE vs. Agland2000 and NLCD for a variety of intermediate and final data products.

4.3 Comparison of Hexbin Plots

To further examine the relationships between the distributions of cropland that we derive from
MLCT data and the Agland2000 and NLCD data we create “hexbin” plots. These are essentially
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two-dimensional histograms that show the number of grid cells that occur within discrete regions
of the space defined by coordinates that are cropland fractions for the two data sets. This operates
much like a common scatter plot but for data sets with as many observations as we wish to include it
gives a cleaner representation of that structure. We employ a logarithmic scale for the bin counts to
obtain a more complete picture of the overall dispersion and local concentration of the observations.
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Figure 10: Hexbin plot of MLCT crop Auin = 1.0 (left) and Ay, = 0.5 (right), both with mosaic
removed, versus Agland2000 crop (top) and NLCD cropland plus hay/pasture (bottom).

Figure [10] plots the crop fractions of MLCT with A,,;,=1 and 0.5 versus the Agland2000 crop
and NLCD ’crop—+hay’ layers. As one would expect there is an overall correlation among these
variables, especially given that Agland2000 provides prior probabilities to the MLCT classification
(and that an early version of MLCT, BU-MODIS provides a key input to the construction of
Agland2000). It is clear that the MLCT primary class exhibits a positive bias overall, although a
subset that is negatively biased is also apparent for low values of the Agland2000 crop fraction in the
interval [0.1,0.5]. Also of particular note is the drastic decrease in correlation when Aglands2000
reaches 1.0 relative to the stronger relationship over the interval [0.8,1.0). There appears to be
something peculiar about the Agland2000 allocation procedure that drives the crop fraction to
its maximum in areas where the remote sensing data clearly resists such a characterization. One
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possible explanation is systematic errors in the agricultural census data that drive the Agland2000
algorithm, forcing unrealistically high concentrations in order to satisfy the algorithm’s constraints.

Figure [10] also shows the correlation of MLCT vs. the NLCD crop and hay/pasture layers. We
see clearly the positive bias of MLCT relative to NLCD in general, and especially over the interval
[0.8,1.0]. These are the cells in which MLCT sees near complete cropland, whereas NLCD sees
sometimes substantial mixing with other classes, which we presume to be largely due to small
features missed by MLCT. A curious feature arises here as well, similar to the decorrelation where
Agland2000 showed 100% crop, there is a decorrelation where NLCD shows close to exactly 0%
crop. The origin of this feature is not clear to us, but we suspect a classification error in MLCT.

We expect that setting Ay,;,=1 will produce a maximum overall bias and attendant error by
assigning entire pixels to the cropland class and not allowing for the possibility of mixed covers.
The results on Table[6]indicate that A,,;,=0.5 is more representative of the distribution of cropland
as compared to both NLCD and Agland2000 because, although the total area indicated is higher
according to Table [5] there is less error on a cell-by-cell basis indicating that it does a better job of
representing the spatial distribution than A,,;,=1.0. It reduces the RMSE against Agland2000 from
0.180 to 0.165, and against NLCD from 0.175 to 0.161. This is reflected in the structure revealed
by Figure [L0| where fewer cells in the MLCT data are assigned 100% crop because of the secondary
class. Additionally, where crop was included in a secondary class it also caused cells of near-zero
value for MLCT to lift away from the x-axis. The uncorrelated observations for Agland2000 equal
to 1.0 and NLCD equal to zero are still present, however.

This result persuades us that considering the secondary class with A,,;, = 0.5 is indeed the
correct approach. From this point forward we will consider only the statistics derived from setting
Anmin=0.5 for the aggregation of the MLCT data due to this improved fit with Agland2000 and
NLCD cropland and its full consideration of all information imparted by the MLCT data.

4.4 Evaluation of NLCD Offsets

We can perform the same error calculations as above to assess whether adding NLCD offsets
improves overall cropland accuracy. Table[6]gives the RMSEs for the various intermediate products.
We see that each step in the algorithm improves the overall error of the data product against both
Agland2000 and NLCD.

We next examine the effect on the total areas for all classes. Figure [11]shows the totals by class
of the offsets that result from this calculation. The item labeled “total” appears blank because a
value of zero is plotted there indicating that area was conserved in this operation, which is to say
that area subtracted from one class was reallocated to another. As expected, the most significant
offset was for the urban class, representing the low-density infrastructure outside of concentrations
of development large enough and dense enough to be identified in the MLCT classification. Water
and wetland fractions were also increased to bring the total areas of those classes in line with
NLCD.

However, the most important outcome with respect to our stated objective of bringing total
cropland areas in line with the total from NLCD and Aglands2000 is the reduction of crop areas
by 39 Ma (15.8 Mha) and mosaic areas by 37.4 Ma (15.2 Mha). This total reduction of 57.8 Ma
(23.4 Mha) of the final crop class after mosaic decomposition brings the national cropland area
for PEELg into close agreement with NLCD, MLU, and Agland2000, 437.6 Ma vs. 449.2, 441.3,
and 446.5 Ma respectively. See Table [5| and Figure 12| for a detailed comparison of the effects of
the offset. Figure [13]| shows two additional hexbin plots using the offset-adjusted MLCT fractions,
which is the PEELg data set short of disaggregating the cropland area into the crop sub-classes.
The six RMSE values given in Table [f] correspond to the six hexbin plots in Figures [10] and [I3]
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The significance of this result is that it is not conditioned by the desired cropland area estimate,
rather it shows a convergence in these estimates by selectively incorporating information about
other classes from NLCD. Figure [20] shows the PEELg data set with a single cropland class.
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Figure 11: Total offsets calculated from NLCD. Figure 12: Total acreages after NLCD adjust-
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Figure 13: Hexbin plot of MLCT adjusted crop versus Agland2000 cropland (left) and versus NLCD
crop plus hay/pasture (right).
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4.5 Potential Further Offsets and Adjustments

There is little consensus among the datasets regarding the relative coverage of forest, shrub, and
open land, or indeed the definitions of these classes. Thus, we find it impractical to compare
among them. MLCT shows 1220.3 Ma of land in one of these three classes, just slightly less than
the final amount (1228.6 Ma) in PEELy, the additional area from mosaic decomposition being
roughly cancelled by the reductions from the WWU offsets. This number compares favorably to
the 1224.5 Ma distributed among these three classes in NLCD and the 1241.3 Ma distributed among
forest and open in MLU, which lacks a class analogous to “shrub”.

We attribute these differences to inconsistent class definitions due to the fairly continuous
transition from open to shrub and from shrub to forest. For instance, NLCD defines forest land to
be any land with greater than 25% coverage by a tree canopy that is generally greater than six meters
tall. Shrubland in NLCD is similarly defined as any area with a shrub canopy (defined as generally
less than 5 or 6 meters high) typically covering greater than 20% of the pixel. Open herbaceous
land is thus roughly everything else that is not subject to intensive management (besides wetlands),
meaning the pixel is at least 80% open grassland. This definition is rather strict by comparison to
the definitions of open grasslands used in MLU and MLCT, which leads to substantial disagreement
among these datasets and is simply the result of class definitions.

Thus far we have refrained from any direct adjustment of the cropland layer in MLCT, and
have shown that, given a principled approach and understanding of the differences between these
datasets, it is possible to bring the USDA MLU, Agland2000, NLCD, and MLCT estimates of
cropland largely into agreement at the national level and in terms of their distributions. If we accept
the premise that higher resolution datasets, such as NLCD, or datasets that include some regional
census information, such as Agland2000, are likely to contain more accurate representations of
cultivated and managed lands, then it follows that these data should contain additional information
about the spatial distribution of cropland within a given region that can be accommodated by a
similar offset mechanism applied directly to the cropland data layer.
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Figure 14: Hexbin plot of NLCD cropland plus hay/pasture versus Agland2000 crop.

Figure [14] shows the hexbin plot of the NLCD ‘crop+hay’ vs. Agland2000 cropland. The RMSE
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across the cUSA between these layers is 0.129, which implies that there is roughly as much variation
in the spatial distribution of cropland between these two products as there is between each of them
and our improved MLCT product. We thus see little principled motivation to choose one or the
other crop layer as a target for further tuning. We will explore these distinctions and potential
improvements along these lines in future work.

5 Computational Tools and Environment

Because our goal is to develop the most accurate and consistent complete global LULC data set,
we focus on developing open-source algorithms, to be released with the dataset upon publication,
that are easily extensible and can accommodate new data and techniques as they become available.
We refer the reader to |Best| [2011] for further details on the software environment and reproducible
research framework under which this work was conducted. We note this analysis would not have
been possible without the excellent raster package for R developed by |Hijmans and van Etten [2011]
and other contributors. We consider this interface to geospatial raster data sets in the R statistical
analysis environment an important contribution to spatial analysis and a laudable accomplishment
because it unleashes the power of a sophisticated, popular, open-source, free software programming
language for statistical operations on large geospatial raster data sets.

6 Conclusions

We have described and validated a new algorithm for combining a wide range of land cover data
from a number of sources, scales, and extents to construct hybrid data products with improved
accuracy and fidelity. Because many of the most interesting steps in our algorithm depend on high
quality, high resolution land cover data that is not yet available on a global basis, we have focussed
our description of the algorithm only on the US. Even so, the positive results that we have obtained
in the US lead us to expect that our procedures for aggregating MLCT to a coarser resolution using
a statistical interpretation of sub-pixel cover and distinguishing likely components of the mosaic
class, can also help to more accurately characterize the distribution of global land cover, especially
cropland.

Because we have constructed the portions of the algorithm that require high resolution/high
value data as offsets to the initial cover representation, we can extend the algorithm globally,
calculating, estimating, or modeling these offsets region by region where possible, and ignoring
them where information is unavailable. Using this algorithm, we have constructed a customized
data product, PEELg, designed to initialize the PEEL model, but we stress that the target of this
work is is more than just a static land cover data set; it is an algorithmic framework and open
source code base for producing global or regional land cover data products with customized cover
representations, which integrates high value information at multiple scales to improve and validate
land cover characterizations.

In the absence of high-resolution data on rural development, the low-density portion of the
“urban” class that falls below MLCT’s detection threshold, we propose that it might be possible
to model the over-estimation factor of the MLCT cropland class. This factor would be defined
as the ratio of total area encompassed by the MLCT cropland classification to acreage actually
under cultivation and could potentially be modeled as a function of classification confidence and
secondary class using the data described and produced here as a training set. The null hypothesis
in the formulation of such a model is that there is enough diversity among agricultural landscapes
in our cUSA study area to adequately characterize agricultural landscapes around the world in this
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regard. Similarly it might be possible to directly model the “urban” percentage below the MLCT
detection threshold as a function of population density and agricultural productivity, identifying
said threshold in the process. There is a clear dependency between these offsets in agriculturally
productive regions so modeling them in conjunction somehow may be constructive. We expect that
global offsets for the water and wetland classes will be harder to obtain without corresponding
proxy statistics with which to formulate a model but perhaps we can expect greater availability
of spatially explicit catalogs of ecological services and sensitive/protected areas in the near future
that would close these gaps in the available information. These directions will be pursued in future
work.
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Figure 15: MLCT primary reclassified cover (top), secondary reclassified cover (middle), and pri-
mary cover classification confidence(bottom) for the cUSA.
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Figure 16: MLCT primary (left) and secondary covers (right).
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Figure 18: Agland2000 distribution in cUSA study area.
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Figure 19: 175Crops2000 category maps.
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Figure 20: Final PEELg maps.
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Figure 21: Normalized fractions for crop sub-classes.
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